Planetas

1 / 131

1 / 131

Marte

Foto: ESA/DLR/FU Berlin

2 / 131

Death of Opportunity

Fotografía ganadora en la categoría: Planets, Comets & Asteroids

Esta es una secuencia de imágenes a través de la oposición perihelica de Marte en 2018 y que siguió el progreso de la gran tormenta de polvo global marciana.

Celestron C14 355 mm Schmidt-Cassegrain reflecting telescope at f/26, Astronomik RGB filters, Celestron CGX-L mount, ZWO ASI290MM camera, mosaic of multiple stacked exposures

 

Foto: Andy Casely / Insight Investment Photographer of the Year 2019

3 / 131

Jupiter Unravelled

Fotografía ganadora del segundo premio en la categoría: Planets, Comets & Asteroids

En esta imagen de Júpiter se pueden ver tormentas de todas las formas y tamaños, junto con la famosa Gran Mancha Roja cerca del centro. La luna Io y su sombra también son visibles ya que fueron capturados en tránsito. La imagen se compuso a partir de múltiples imágenes obtenidas durante un período de cinco días. Todas las imágenes se ensamblaron manualmente para formar la imagen final.

Celestron C14 355 mm Schmidt-Cassegrain reflecting telescope at f/22, Losmandy G11 mount, ZWO ASI290MM camera, mosaic from 30,000 stacked exposures

Foto: Damian Peach / Insight Investment Photographer of the Year 2019

4 / 131

Black Saturn

Fotografía galardonada con una mención de honor en la categoría: Planets, Comets & Asteroids

Esta imagen fue tomada en una noche cálida de agosto usando un filtro de metano para revelar, como bandas oscuras, las altas concentraciones de este gas en la atmósfera de Saturno.

Home-built 444 mm Dobsonian Newtonian reflecting telescope at f/11.9, ZWO CH4 filter, Home-built Equatorial Tracking Platform, ZWO ASI290MM camera, multiple stacked exposures

Foto: Martin Lewis / Insight Investment Photographer of the Year 2019

5 / 131

Saturno

Foto: NASA / ESA / A. Simon (Goddard Space Flight Center) / M.H. Wong (U.C. Berkeley)

6 / 131

Exoplaneta K2-18b y su estrella anfitriona

Foto: ESA / Hubble / M. Kornmesser

7 / 131

Sistema de anillos de Urano en infrarojo cercano

Esta imagen muestra la luz solar reflejada. Entre los anillos principales, que se componen de partículas del tamaño centímetros o más grandes, se pueden ver láminas de polvo. El anillo de Épsilon que se ve en las nuevas imágenes térmicas se encuentra en la parte inferior.

Foto: UC Berkeley / Imke de Pater /Seran Gibbard / Heidi Hammel

8 / 131

La atmósfera y los anillos de Urano en longitudes de onda de radio

Esta imagen muestra por primera vez la emisión térmica, o el calor, de los anillos de Urano, lo que ha permitido a los científicos determinar su temperatura. Las bandas oscuras en la atmósfera de Urano en estas longitudes de onda muestran la presencia de moléculas que absorben las ondas de radio, en particular el gas de sulfuro de hidrógeno. Las regiones brillantes como el punto polar norte - el punto amarillo de la derecha -Urano está inclinado- contiene muy pocas de estas moléculas.

Foto: UC Berkeley/Edward Molter/Imke de Pater

9 / 131

Los anillos de Urano

Esta serie de imágenes muestra el sistema de anillos de Urano capturado en diferentes longitudes de onda por los telescopios ALMA y VLT.

Foto: Edward Molter /Imke de Pater / Michael Roman / Leigh Fletcher

10 / 131

Pioneer 10

El 3 de diciembre de 1973 la Pioneer 10 de la NASA se convierte en la primera sonda espacial en alcanzar la órbita de Júpiter.

Foto: NASA

11 / 131

El primer viaje a Mercurio

El 29 de marzo de 1974 la sonda Mariner 10 de la NASA se convierte en la primera en realizar un vuelo sobre el planeta mercurio.

Foto: NASA

12 / 131

Saturno durante el equinoccio de 2009

Foto: NASA/JPL/Space Science Institute

13 / 131

Tormenta y remolino

La nave espacial Juno de la NASA, ahora en el octavo año de su misión a Júpiter, ofreció abundantes datos e imágenes espectaculares del gigante gaseoso del sistema solar.En la imagen podemos observar un gran número de nubes arremolinadas y la gran tormenta joviana llamada el óvalo blanco, en el dinámico hemisferio norte del planeta.

Foto: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt / Seán Doran

14 / 131

Representación artística del exoplaneta Barnard-b

La estrella única más cercana al Sol alberga un exoplaneta al menos 3,2 veces tan masivo como la Tierra, una llamada supertierra. Utilizando datos de un conjunto de telescopios de todo el mundo (incluyendo el instrumento cazador de planetas HARPS de ESO), se ha revelado la existencia de este mundo helado y débilmente iluminado. El planeta recién descubierto es el segundo exoplaneta conocido más cercano a la Tierra. La estrella de Barnard es la estrella más rápida del cielo nocturno.

Foto: ESO/M. Kornmesser

15 / 131

Parade of the Planets

Segundo puesto en la categoría: Planets, Comets and Asteroids

En el transcurso de solo un año, el fotógrafo logró captar imágenes de la superficie de cada planeta de nuestro Sistema Solar desde su propio jardín. Al comienzo del año, el fotógrafo había capturado el lejano Marte. Más tarde, capturó a Venus, luego a Júpiter y Saturno. En septiembre, el fotógrafo fotografió detalles en la cara rocosa de Mercurio por primera vez y en noviembre registró la región polar de Urano, completando el conjunto. Los planetas más desafiantes, Mercurio, Urano y Neptuno, requirieron imágenes IR (infrarrojas) para resaltar los detalles de la superficie y se han coloreado para que coincidan con su apariencia visual más normal. Todas las imágenes se muestran en el mismo tamaño relativo que aparecerían a través de un telescopio.

St Albans, Hertfordshire, Reino Unido

Home-built 444-mm Dobsonian Newtonian reflector telescope (Mercury used 222-mm Dobsonian), various IR filters for Uranus, Neptune, Mercury, Saturn (L). UV filter for Venus, home-built Equatorial Platform, ZWO ASI174MC/ASI174MM/ ASI290MM camera, various focal lengths f/12 to f/36, various exposures

 

Foto: Martin Lewis / Insight Investment Astronomy Photographer of the Year

16 / 131

Esfera armilar

Este instrumento es un modelo del firmamento visto desde la superficie terrestre. Está formada por una pequeña esfera situada en el centro que representa la Tierra y diversas armillas (aros) que muestran el viaje del Sol durante un año (eclíptica), los equinoccios, solsticios y el zodiaco. Las armillas de la esfera se articulan entre sí para simular el movimiento aparente e la bóveda celeste durante un año. Esfera armilar del siglo XVI, Pinacoteca Ambrosiana, Milán.

FOTO: Bridgeman / ACI

17 / 131

Triquetrum

El triquetrum (tres esquinas), también llamado instrumento paraláctico está formado por dos brazos articulados de igual longitud y otro más largo, la hipotenusa del triángulo rectángulo que forma con los otros dos brazos. Dos de estas varillas eran fijas y la tercera móvil y servía para calcular la altura del astro observado en la bóveda celéste, medida en grados.El triquetrum de la imagen es una réplica del instrumento que usó Copérnico en Frombork.

FOTO: Alamy / ACI

18 / 131

Un esquema revolucionario

Nicolás Copérnico incluyó en su obra Sobre las revoluciones de los orbes celestes un diagrama del modelo del universo, según los datos que fue recopilando en sus observaciones.

FOTO: Album

19 / 131

Copérnico y su obra

Nicolás Copérnico fue un hombre introvertido y reservado que dedicó casi toda su vida al estudio y a la observación del firmamento. Los datos que recopiló durante años fueron plasmados en su gran Obra, Sobre las revoluciones de los orbes celestes, en la que expuso la teoría de que los astros giran alrededor del Sol. Esta litografía de Jean-Leon Huens, recrea al astrónomo en su taller elaborando su modelo heliocéntrico.

FOTO: Alamy / ACI

20 / 131

El astrónomo en Frombork

Copérnico pasó las últimas décadas de su vida en Frombork, una ciudad en la desembocadura del río Vístula, donde trabajó para la diócesis. Allí, la leyenda sitúa su trabajo de contemplación en una torre en el recinto de la catedral, pero lo cierto es que el astrónomo poseía una residencia fuera de las murallas que protegían el templo y en cuyo jardín mandó construir el llamado pavimentum, un suelo nivelado y firme para sus instrumentos. El óleo de 1873, Astrónomo Copérnico, o conversaciones con Dios, de Jan Matejko, recrea la leyenda del científico polaco en su torre observando el firmamento con sus instrumentos. 

FOTO: Bridgeman / ACI

21 / 131

Narratio Prima, síntesis de la obra copernicana

El astrónomo austriaco Georg Joachim Rheticus fue la persona más importante para la futura fama de Copérenico: fue a conocerlo a Frombrork en 1540 y lo persuadió para que le dejara escribir y publicar la Narratio prima, una exposición simplificada de las investigaciones de Nicolás Copérnico. Gracias al empeño personal de Rheticus se editó también, en 1543, la gran obra del astrónomo polaco, Sobre las Revoluciones de los orbes celestes. Esta imagen pertenece a la portada de una edición de la Narratio prima de 1566.

FOTO: Culture Club / Getty Images

22 / 131

Ptolomeo, el astrónomo geocéntrico

En el siglo II d.C., el astrónomo y científico greco-egipcio Claudio Ptolomeo formuló la teoría sobre el universo que estuvo vigente hasta la publicación de la obra de Copérnico 15 siglos mas tarde. Ptolomeo defendía que la Tierra era el centro del universo y alrededor de ella giraban todos los astros que cruzaban el firmamento. Retrato de Ptolomeo, hacia 1475. Museo del Louvre París.

FOTO: Bridgeman / ACI

23 / 131

Sobre las Revoluciones, la gran obra de Copernico

En 1543, gracias al empeño personal de Rheticus, apareció en Núremberg la versión completa de Sobre las revoluciones de los orbes celestes, la gran obra en la que Nicolás Copérnico exponía su modelo de cosmos: un universo cerrado con el sol en el centro y los demás astros girando a su alrededor. La imagen pertenece a una edición de la obra magna de Copérnico y la Narratio prima publicada en Basilea en 1566.

FOTO: Bridgeman / ACI

24 / 131

Atlas del universo copernicano

El modelo heliocéntrico representado por Andreas Cellarius en su atlas Harmonia macrocósmica, publicado en 1660, en el que plasmó los modelos de universo de Ptolomeo, Copérnco y Brahe.

FOTO: RMN-Grand Palais

25 / 131

Los cálculos y las observaciones del astrónomo

Copérnico anotó las observaciones que hacía y las incluyó en su obra. Esta imagen reproduce un par de páginas del libro II de Sobre las revoluciones de los orbes celestes con las tablas astronómicas de las observaciones copernicanas.

FOTO: SPL / Getty Images

26 / 131

Johannes Kepler, el continuador

El astrónomo alemán Johanes Kepler (1571-1630) era un firme creyente en la teoría heliocéntrica, que a principios del siglo XVII todavía no se había impuesto completamente en el mundo científico. El alemán perfeccionó el modelo del polaco y calculó las órbitas exactas de los planetas, elípticas. Sus leyes describen el movimiento de los planetas alrededor del Sol. Retrato anónimo de Kepler pintado hacia 1620. Fundación Saint-Thomas, Estrasburgo.

FOTO: Erich Lessing / Album

27 / 131

La última visión

Una leyenda sostiene que, cuando estaba postrado en su lecho de muerte y sin conocimiento, pusieron en manos de Copérnico una copia recién impersa de Sobre las revoluciones. Entonces, el astrónomo recuperó la conciencia por un momento, vio el libro y a continuación expiró. El episodio, arriba ilustrado por Josep Planella en 1876 para La ciencia y sus hombres, si no es totalmente apócrifo, recuerda mucho a la biografía de santo.

FOTO: Bridgeman / ACI

28 / 131

El perfecto universo esférico

La teoría de Copérnico se basaba en observaciones y cálculos matemáticos, pero también en ideas filosóficas, como que el círculo «es la forma más perfecta de todas». El astrónomo creía en un universo finito (aunque muy grande) formado por ocho esferas concéntricas girando en torno al sol.

FOTO: G. Duprat / Ciel et Espace Photos / Contacto

29 / 131

Luna, Venus, Tierra, Júpiter; buenas noches a todos

Foto: NASA / Scott Kelly

30 / 131

Estrella enana PDS 70

Imagen colorida que muestra el cielo alrededor de la débil estrella enana anaranjada PDS 70 (en el centro de la imagen). La estrella azul brillante a la derecha es χ Centauri.

Imagen: ESO / Digitized Sky Survey 2. Acknowledgement: Davide De Martin

31 / 131

Constelación Centaurus

Carta celeste que muestra la constelación austral Centaurus, en el extremo norte de la Vía Láctea. La estrella enana PDS 70 aparece marcada con un círculo rojo. 

Imagen: ESO, IAU and Sky & Telescope

32 / 131

Un punto brillante

El planeta aparece claramente en la imagen: un punto brillante a la derecha del centro ennegrecido de la imagen (ennegrecido con un coronógrafo que bloquea la luz cegadora de la estrella central).

Imagen: ESO / A. Müller et al.

33 / 131

Exoplaneta WASP-107b

El exoplaneta WASP-107b es un gigante gaseoso que orbita alrededor de una estrella altamente activa del tipo K, que se encuentra a 200 años luz de la Tierra. Los científicos han usado la espectroscopia para descubrir helio en la extensa atmósfera del planeta. Se trata de la primera detección de esto elemento en la atmósfera de un exoplaneta.

Imagen: ESA / Hubble, NASA, M. Kornmesser

34 / 131

Reconstrucción de la estrella KELT- 9 y su planeta

El planeta descubierto, muy inusual entre los encontrados hasta la fecha, ha sido descrito en la revista Nature y ante la Sociedad Astronómica Americana esta semana. KELT-9b es 2,8 veces más masivo que Júpiter, pero solo la mitad es denso. 

Foto: JPL-CALTECH / NASA

35 / 131

Planeta Urano

En esta fotografía tomada por la sonda espacial Voyager 2 en 1986, podemos contemplar el planeta Urano. Lanzada en 1977, la de la Voyager 2 es la única misión espacial en alcanzar el gigante helado, y a corto plazo no se prevé el lanzamiento de ninguna otra misión en dirección al séptimo planeta del sistema solar.

Foto: NASA/JPL-Caltech

36 / 131

El sistema solar

37 / 131

Propiedades de los 7 planetas de Trappist

Esta infografía muestra las principales características de los siete planetas de TRAPPIST-1, junto con los cuatro planetas más interiores del Sistema Solar a la misma escala.

Foto: NASA/JPL-Caltech/R. Hurt, T. Pyle (IPAC)

38 / 131

Similitudes y diferencias con el sistema solar

Este esquema compara los tamaños, masas y temperaturas estimadas de los planetas de TRAPPIST-1 con los de planetas del Sistema Solar. Los colores indican las temperaturas y la línea negra coincide con la densidad y la composición de los planetas terrestres del Sistema Solar. Los planetas que están por encima de la línea son menos densos y los planetas que están por debajo son más densos.

Foto: ESO/S. Grimm et al.

39 / 131

Comparativa del sistema Trappist con la Tierra

"Es interesante que los planetas más densos no sean los que están más cerca de la estrella y que los planetas más fríos no tengan atmósferas gruesas", señala Caroline Dorn, de la Universidad de Zúrich

Foto: ESO/M. Kornmesser

40 / 131

Sistema planetario TRAPPIST-1

La ilustración muestra varios de los planetas que orbitan a la estrella enana roja ultrafría TRAPPIST-1. Nuevas observaciones, combinadas con sofisticados análisis, han proporcionado estimaciones de las densidades de los siete planetas del tamaño de la Tierra y sugieren que son ricos en materiales volátiles, probablemente agua.

Imagen: ESO / M. Kornmesser

41 / 131

7 planetas similares a la Tierra y potencialmente habitables

La NASA anunció a finales de febrero un descubrimiento histórico: un sistema solar formado por siete planetas de tamaño similar al de la Tierra, que orbitan una sola estrella, y tres de ellos están firmemente ubicados en la zona de habitabilidad, una región alrededor de la estrella en la que un planeta rocoso podría tener agua en estado líquido y, por tanto, podría albergar vida. "Cualquiera de estos siete planetas podría tener agua líquida, que es la clave de la vida en nuestro mundo, bajo las condiciones atmosféricas adecuadas, pero son mayores las probabilidades en los tres que están en la zona habitable", declaraba la NASA en un comunicado. El sistema planetario TRAPPIST-1, más antiguo que nuestro Sistema Solar, se encuentra a una distancia insalvable con la tecnología actual. Sin embargo, el telescopio espacial James Webb, cuyo lanzamiento está previsto para octubre de 2018, tendrá una mayor sensibilidad y "será capaz de detectar las huellas químicas que dejan el agua, el metano, el oxígeno, el ozono y otros componentes de la atmósfera de un planeta, además de analizar las temperaturas y presiones superficiales de los planetas, que son factores clave para evaluar su habitabilidad", explicaba la NASA. La imagen es una representación artística de la superficie del planeta TRAPPIST-1f. Más información aquí.

Imagen: NASA / JPL-Caltech

42 / 131

Un sistema solar parecido al nuestro

El aprendizaje autómatico, una aproximación a la inteligencia artificial, permitió descubrir dos exoplanetas: un sexto planeta del tamaño de la Tierra en el sistema Kepler-80, denominado Kepler-80g; y un octavo planeta orbitando el sistema solar Kepler-90, denominado Kepler-90i y que "es como una versión mini de nuestro Sistema Solar", comentaba Vanderburg en un comunicado de la NASA. "Nuestro descubrimiento de un octavo planeta vincula a Kepler-90 con nuestro Sol al ser la estrella conocida que acoge el mayor número de planetas", concluyen los autores del estudio. "Tal y como esperábamos hay descubrimientos emocionantes escondidos en nuestra información archivada de Kepler, esperando la adecuada herramienta o tecnología para ser descubiertos", expresa Paul Hertz, director de la División de Astrofísica de la NASA. Kepler-90 destaca por la configuración de su sistema planetario: es similar al Sistema Solar, con planetas rocosos en el centro y gaseosos en el exterior. Más información aquí.

Imagen: NASA / Ames Research Center / Wendy Stenzel

43 / 131

Kepler-90

El sistema solar Kepler-90 tiene ocho planetas conocidos, como nuestro Sistema Solar. Kepler-90, una estrella similar a nuestro Sol, se encuentra a 2.545 años luz de la Tierra.

Imagen: NASA / Ames Research Center / Wendy Stenzel

44 / 131

Dafne orbitando el límite del anillo A de Saturno

Foto: NASA/JPL-Caltech/Space Science Institute

45 / 131

Ilustración del planeta Ross 128 b

Esta recreación artística muestra al planeta templado Ross 128 b, con su estrella enana roja anfitriona al fondo. Este planeta, que se encuentra a tan solo once años luz de la tierra, fue descubierto por un equipo que ha utilizado un instrumento único en su clase, el cazador de planetas HARPS de ESO. El nuevo mundo es ahora el segundo planeta templado más cercano tras Próxima b. También es el planeta más cercano descubierto que orbita a una estrella enana roja inactiva, lo cual puede aumentar las probabilidades de que se trate de un planeta que, potencialmente, pudiera albergar vida. Ross 128 b será un blanco perfecto para el ELT (Extremely Large Telescope) del ESO, que será capaz de buscar biomarcadores en su atmósfera.

Foto: ESO/M. Kornmesser

46 / 131

El cielo que rodea a la estrella enana roja Ross 128

Esta imagen muestra el cielo que rodea a la estrella enana roja Ross 128 en la constelación de Virgo. Fue creada a partir de imágenes que pertenecen al sondeo “Digitized Sky Survey 2”. Ross 128 aparece en el centro de la imagen. Una inspección minuciosa revela que Ross 128 tiene un extraño aspecto múltiple, ya que esta imagen fue creada a partir de fotografías tomadas durante un período de más de cuarenta años y la estrella, que se encuentra a tan solo once años luz de la Tierra, se ha movido bastante durante este tiempo. Ross 128 es una estrella enana roja "tranquila" y está orbitada por Ross 128 b, un exoplaneta con una masa y una temperatura similares a las de la Tierra.

Foto: Digitized Sky Survey 2. Acknowledgement: Davide De Martin

47 / 131

La estrella enana roja Ross 128 en la constelación de Virgo

Este mapa muestra la gran constelación zodiacal de Virgo. Esta constelación es el hogar de la débil estrella enana roja Ross 128, marcada con un círculo rojo, que también se conoce como Próxima Virginis ya que es la estrella de esta constelación más cercana a la Tierra. Es orbitada por un planeta de masa terrestre, Ross 128 b. Esta fotografía muestra la mayoría de las estrellas que pueden verse a simple vista en una noche oscura y despejada. Para ver a Ross 128 se necesita un telescopio pequeño.

Foto: ESO, IAU and Sky & Telescope

48 / 131

Un gigante gaseoso y una enana roja

NGTS-1b es un planeta del tamaño de Júpiter, pero con un 20% menos de masa, que orbita una estrella pequeña, con la mitad de radio y masa que nuestro Sol.

Imagen: University of Warwick / Mark Garlick

49 / 131

Un amanecer en el planeta NGTS-1b

Impresión artística de un amanecer en el planeta NGTS-1b.

Imagen: University of Warwick / Mark Garlick

50 / 131

Saturn

Ganador absoluto en la categoría: Young Astronomy Photographer of the Year

Esta imagen increíblemente detallada del planeta anillado Saturno fue tomada por la joven fotógrafa Olivian Willamson, de 13 años durante un viaje al desierto con su padre.

Abu Dhabi, Emiratos Árabes Unidos, 27 de mayo de 2016
Celestron C11 355.6 mm f/10 reflector telescope at f/2.7, Sky-Watcher AZ-EQ6 GT mount, ZWO ASI224MC camera

Foto: Olivia Williamson. 13 años/ Insight Astronomy Photographer of the Year 2017

¿Deseas dejar de recibir las noticias más destacadas de National Geographic España?