Detectado un exoplaneta que desafía los modelos de formación de los sistemas planetarios

¿Cómo se forman los sistemas planetarios? ¿Y los planetas que los conforman? Hasta ahora se pensaba que los planetas gigantes se formaban a partir de la acumulación de gas alrededor de un núcleo rocoso. Sin embargo han encontrado este planeta gigante gaseoso orbitando alrededor de una estrella pequeña, lo cual ha desconcertado a los científicos...

Carmenes emplea la técnica de velocidad radial, que busca diminutas oscilaciones en el movimiento de las estrellas generadas por la atracción de los planetas que giran a su alrededor

Carmenes emplea la técnica de velocidad radial, que busca diminutas oscilaciones en el movimiento de las estrellas generadas por la atracción de los planetas que giran a su alrededor

Foto: CSIC

Carmenes emplea la técnica de velocidad radial, que busca diminutas oscilaciones en el movimiento de las estrellas generadas por la atracción de los planetas que giran a su alrededor

El universo esconde muchos misterios que se desentrañan poco a poco según avanza la tecnología y se incrementa el conocimiento. Hasta ahora se creía que los planetas gigantes gaseosos se forman a partir de un núcleo sólido que va acumulando gas, sin embargo parece ser que no es así. Este nuevo hallazgo liderado por científicos del Consejo Superior de Investigaciones Científicas (CSIC) y del Institut de Ciències Espacials de Catalunya (IEEC) y publicado en la revista Science, sugiere que estos planetas se forman tras la ruptura en fragmentos del disco protoplanetario que rodea a la estrella.

El exoplaneta gigante ahora detectado orbita en torno a la estrella enana roja GJ 3512, que es casi idéntica a la estrella Próxima Centauri y similar a la Estrella de Teegarden y Trappist-1. Estas tres albergan planetas similares a la Tierra, en órbitas templadas y compactas. Pero ninguna de dichas estrellas cuenta con planetas gigantes gaseosos, como sí sucede con la enana roja GJ 3512, que forma de este modo un sistema planetario anómalo: una estrella pequeña con un planeta gigante.

Modelo de Acumulación de Núcleos

La teoría establecida se conoce como modelo de acumulación de núcleos y muestra que planetas gaseosos gigantes como Júpiter y Saturno, u otros similares en sistemas diferentes, se forman a partir de núcleos rocosos de unas pocas masas terrestres dentro del disco protoplanetario que rodea a la estrella. Cuando alcanza una masa crítica, estos núcleos comienzan a acumular grandes cantidades de gas hasta que alcanzan la masa de los planetas gigantes.

Sin embargo, este modelo no sirve para GJ3512. Las estrellas enanas muestran discos de baja masa, de modo que la cantidad de material disponible en el disco para formar planetas también se reduce significativamente. La presencia de un gigante gaseoso alrededor de una estrella de baja masa indica que el disco original era anormalmente masivo, o que el modelo dominante no se aplica en este caso, según explican los investigadores.

Elaboración de otro modelo

Junto con investigadores del Instituto Max Planck de Astronomía (Alemania), la Universidad de Berna (Suiza) y el Observatorio de Lund (Suecia), líderes mundiales en el estudio de formación de planetas los científicos han intentado dar explicación a esta anomalía. “Tras múltiples simulaciones y largas discusiones, concluimos que nuestros modelos más actualizados nunca podrían explicar la formación de un solo planeta gigante, y mucho menos de dos», explica Alexander Mustill, investigador del Observatorio de Lund.

Así, se retomó otro posible escenario, el modelo de inestabilidad de disco, que defiende que los gigantes gaseosos pueden formarse directamente a partir de la acumulación de gas y polvo en el disco protoplanetario en lugar de requerir un núcleo "semilla". Un modelo que, hasta ahora, solo era compatible con un grupo reducido de planetas jóvenes, calientes y muy masivos situados a grandes distancias de su estrella anfitriona.

El hallazgo en torno a GJ3512 constituye el primer candidato de fragmentación de disco alrededor de una estrella de baja masa, y también el primero en ser descubierto por mediciones de velocidad radial.

Tecnología para detectar exoplanetas

Carmenes emplea la técnica de velocidad radial, que busca diminutas oscilaciones en el movimiento de las estrellas generadas por la atracción de los planetas que giran a su alrededor. Y lo hace en torno a estrellas enanas rojas, más pequeñas que el Sol, que ofrecen las condiciones para la existencia de agua líquida en órbitas cercanas y en las que, a diferencia de las de tipo solar, pueden detectarse las oscilaciones producidas por planetas similares al nuestro con la tecnología actual.

Tal y como explica Pedro J. Amado, participante en el hallazgo “con este descubrimiento, Carmenes logra la primera detección de un exoplaneta utilizando un instrumento de precisión en el infrarrojo de nueva generación. Vemos así que el brazo infrarrojo de Carmenes, desarrollado en IAA-CSIC, ha cumplido sus exigentes requerimientos y muestra un nivel de eficacia muy alto”.

Los científicos continúan recopilando datos para comprobar si se trata finalmente de un sistema equivalente a nuestro sistema solar a pequeña escala.

El consorcio Carmenes continúa observando la estrella para confirmar la existencia de un segundo objeto, posiblemente un planeta similar a Neptuno, con un período orbital más largo. Además, los científicos no han descartado la presencia de planetas terrestres en órbitas templadas alrededor de GJ 3512. Más datos dirán si se trata finalmente de un sistema equivalente a nuestro sistema solar a pequeña escala.

Compártelo

¿Deseas dejar de recibir las noticias más destacadas de National Geographic España?