Cerebro

1 / 22

1 / 22

"Brain on a chip"

"Brain on a chip"

Técnica utilizada: microscopía confocal

Las células madre neuronales tienen la capacidad de diferenciarse en todos los tipos de células del sistema nervioso. En la imagen puede apreciarse como los científicos están investigando el modo en que las células madre neuronales crecen en un gel sintético llamado PEG. Tras sólo dos semanas, las células madre - en magenta- produjeron varias fibras nerviosas, en verde. Estas fibras se formaron en base al gradiente de concentración del Gel PEG, lo que proporciona a los investigadores una valiosa información sobre cómo el ambiente afecta a la organización estructural en la formación de nuevo tejido nervioso. 

Este experimento se enmarca dentro del proyecto "Human-on-a-Chip", el cual cuestiona la ineficiencia y el costo de las pruebas tradicionales de algunos fármacos. Los investigadores han ideado formas de cultivar órganos en miniatura sobre chips de plástico que esperan, puedan ser conectados para representar el cuerpo humano. Esto podría utilizarse para predecir con exactitud la eficacia y toxicidad de los medicamentos, vacunas o algunas drogas,  eliminando así la necesidad realizar pruebas en animales en la investigación médica.

http://www.wellcomeimageawards.org/2017/

 

Foto: Collin Edington and Iris Lee / © Massachusetts Institute of Technology (MIT)

2 / 22

"Developing spinal cord"

"Developing spinal cord"

Técnica utilizada: microscopía confocal.
Nuestras espinas dorsales son las encargadas de proteger la médula espinal, que conecta todos los nervios de nuestro cuerpo con el cerebro. La médula espinal se forma a partir de una estructura llamada tubo neural, que se desarrolla durante el primer mes de embarazo. Esta serie de tres imágenes muestra el extremo abierto del tubo neural de un ratón. En cada imagen aparece resaltado -en azul-  cada uno de los tres principales tipos de tejido que se forman durante el desarrollo embrionario.

A la izquierda encontraremos el tubo neural en sí mismo, que se convertirá en el cerebro, la columna vertebral y los nervios. A la derecha encontramos el ectodermo. La palabra "ectodermo" proviene de los vocablos griegos "ektos" que significa "exterior" y "dermis" que significa piel. A partir de este tejido se formarán la piel, los dientes y el cabello. En la imagen central se muestra el mesodermo -también del griego, "piel media"- , que formará los órganos.

Durante el desarrollo embrionario pueden producirse problemas en la formación del tubo neural.  Algunos de ellos pueden desembocar en una malformación conocida como espina bífida, en la que los huesos de la columna vertebral y la médula espinal no se forman correctamente. Los investigadores están estudiando el proceso en ratones para tratar de prevenir el desarrollo de estas malformaciones en seres humanos.

http://www.wellcomeimageawards.org/2017/

 

Foto: Gabriel Galea, University College London

3 / 22

"Surface of a mouse retina"

"Surface of a mouse retina"

Técnica utilizada: microscopía confocal.
La retina, situada en la parte posterior del ojo, contiene las células sensibles a la luz responsables de convertir esta en señales nerviosas eléctricas que el cerebro puede procesar. Como resultado del envejecimiento o lesiones, la retina puede perder esta función, causando la pérdida de visión. Esta imagen fue creada cosiendo digitalmente un conjunto de 400 imágenes para formar una que abarcara la superficie completa de una retina de ratón.

 

Los vasos sanguíneos -azul- irradian desde el centro de la imagen. Los astrocitos -células especializadas del sistema nervioso- se muestran en rojo y verde. Estas células desempeñan muchas funciones. Entre ellas se incluyen el suministro de nutrientes a nervios y cerebro, o  el apoyo en los procesos de reparación cerebral y de la médula espinal después de un lesión. Son muy importantes para la supervivencia y regeneración de las células nerviosas. Aquí, los científicos están investigando si la función de los astrocitos cambia durante la degeneración retiniana, lo que puede conducir al desarrollo de nuevos tratamientos para la pérdida de la visión.

http://www.wellcomeimageawards.org/2017/

 

 

Foto: Gabriel Luna, Neuroscience Research Institute, University of California, Santa Barbara

4 / 22

"Language pathways of the brain"

"Language pathways of the brain"

Técnica utilizada: tractografía. Combina la obtención de imagenes por resonancia magnética (IRM) y su análisis asistido por ordenador. 

El cerebro está compuesto de dos tipos de materia. La materia o sustancia gris contiene las células nerviosas y es la responsable del procesamiento de la información. La materia o sustancia blanca, al contrario, esta formada por las fibras nerviosas que contienen los axones de las neuronas, y funciona conectando estas áreas de materia gris permitiendo que la información sea transferida entre áreas distantes del cerebro. En este sentido, las áreas cerebrales responsables del habla y el lenguaje se encuentran asignadas a dos regiones cerebrales diferentes. Esta imagen muestra una reconstrucción impresa en 3D del modo en que materia blanca conecta estas dos áreas; una ruta neuronal que recibe el nombre de fascículo arqueado. 

 

http://www.wellcomeimageawards.org/2017/

Foto: Stephanie J. Forkel; Ahmad Beyh, Natbrainlab, King’s College London / Alfonso de Lara Rubio, King’s College London

5 / 22

cerebro1. Parcelación de un hemisferio

Parcelación de un hemisferio

Esta imagen muestra las 180 áreas de uno de los dos hemisferios del cerebro. La parcelación está basada en información de gran calidad obtenida de adultos jóvenes y sanos de ambos sexos a través del del Human Connectome Project.

Imagen: Matthew F. Glasser, David C. Van Essen

6 / 22

cerebro2. Un mapa real y preciso

Un mapa real y preciso

Los investigadores han descubierto 180 áreas bien delimitadas en cada hemisferio del cerebro. "Hacer un mapa real y preciso ha sido un objetivo de la neurociencia desde hace un siglo", reconocen los investigadores.

Imagen: Matthew F. Glasser, David C. Van Essen

7 / 22

cerebro3. Patrones de activación y de desactivación

Patrones de activación y de desactivación

Patrones de actividad del cerebro (rojo y amarillo) y de desactivación (azul y verde) en el hemisferio izquierdo mientras los pacientes escuchaban historias.

Imagen: Matthew F. Glasser, David C. Van Essen

8 / 22

cerebro4. Niveles de mielina

Niveles de mielina

Mapa de niveles de mielina en el cerebro (el rojo y el amarillo indican contenidos altos; el añil y el azul indican contenidos bajos).

Imagen: Matthew F. Glasser, David C. Van Essen

9 / 22

snapshot1-1b. Visto de cerca

Visto de cerca

Dispuestas una encima de otra, 10.000 de esas microfotografías forman un modelo tridimensional del tamaño de un grano de sal. Visualizar un cerebro humano con tanto detalle requeriría una cantidad de datos igual a todos los textos de todas las bibliotecas del mundo.

 

Josh L. Morgan, Universidad Harvard; Arthur Wetzel, Centro de Supercomputación de Pittsburgh

10 / 22

MM8183 130410 001772. Preparación de un cerebro humano a cargo del Instituto Allen para la Ciencia del Cerebro

Preparación de un cerebro humano a cargo del Instituto Allen para la Ciencia del Cerebro

Las nuevas tecnologías arrojan luz sobre el gran misterio por resolver de la biología: el verdadero funcionamiento del cerebro.

Foto: Robert Clark

11 / 22

MM8183 130529 003804. Mapeando el cerebro

Mapeando el cerebro

En el Centro de Imágenes Biomédicas Martinos, un ingeniero lleva puesto un casco con sensores para la realización de una exploración cerebral que consume casi tanta energía como un submarino nuclear. Unas antenas captan las señales emitidas cuando el campo magnético del escáner excita las moléculas de agua del cerebro. Unos ordenadores convierten los datos en mapas del cerebro como el que se muestra en la imagen siguiente.

 

Foto: Robert Clark

12 / 22

van for kurt. El color del pensamiento

El color del pensamiento

Las diversas regiones del cerebro están conectadas por unos 160.000 kilómetros de fibras (una longitud equivalente a cuatro veces la circunferencia de la Tierra) que constituyen la denominada sustancia blanca. Imágenes como esta, tomada en el Centro de Imágenes Biomédicas Martinos, revelan por primera vez las rutas específicas relacionadas con determinadas funciones cognitivas. Los haces coloreados en rosa y naranja, por ejemplo, transmiten señales de importancia crítica para el lenguaje.

 

Van Wedeen y L. L. Wald, Centro de Imágenes Biomédicas Martinos, Proyecto Conectoma Humano

13 / 22

MM8183 130522 002890. Incisiones críticas

Incisiones críticas

Mientras extirpaba partes del tumor, Fortin aplicaba una corriente a la región para determinar si las neuronas adyacentes tenían una participación crítica en el movimiento. «Este paciente conservaba gran parte de su función motora –dice Maxime Descoteaux, una de las científicas de la Universidad de Sherbrooke que tomó las imágenes del cerebro–. Por eso, en este caso el cirujano fue más conservador que agresivo.» (Mira el vídeo.)

 

Foto: Robert Clark

14 / 22

van for kurt close. Anatomía de un misterio

Anatomía de un misterio

Las nuevas tecnologías permiten a los científicos desentrañar la estructura oculta del cerebro. Un detalle en alta resolución de la imagen anterior revela fibras de sustancia blanca dispuestas en una misteriosa estructura reticulada, como los paralelos y meridianos de un mapa.

 

 

Van Wedeen y L. L. Wald, Centro de Imágenes Biomédicas Martinos, Proyecto Conectoma Humano

15 / 22

Fig 3H Gross etal. El brillo de la memoria

El brillo de la memoria

Cuando formamos un recuerdo, «hay un cambio físico en el cerebro», dice Don Arnold, de la Universidad del Sur de California. Los puntos rojos y verdes de las ramificaciones de esta neurona de rata muestran los puntos de contacto con otras neuronas. A medida que se forman recuerdos, surgen puntos nuevos y los antiguos se desvanecen.

Imagen: Garrett Gross y Don Arnold, Universidad del Sur de California

16 / 22

MM8183 130530 004387. Visto de cerca

Visto de cerca

Doscientas secciones de un trozo de cerebro de ratón, cada una de menos de una milésima del grosor de un cabello humano, están listas para ser fotografiadas a través de un microscopio electrónico. Dispuestas una encima de otra, 10.000 de esas microfotografías forman un modelo tridimensional del tamaño de un grano de sal (entre las pinzas). 

 

Foto: Robert Clark

17 / 22

Jenn combo. Jennifer en el cerebro

Jennifer en el cerebro

Investigadores del Caltech y la UCLA utilizan fotografías de personas famosas para estudiar la manera en que el cerebro procesa lo que percibe el ojo. En 2005 encontraron una neurona que se activaba únicamente cuando los participantes de la prueba veían imágenes de Jennifer Anniston. Otra neurona respondía únicamente a fotografías de Halle Berry, aunque llevara la máscara de Catwoman. Los estudios posteriores sugieren que muy pocas neuronas participan en la representación mental de una persona, un lugar o un concepto determinados, lo que convierte al cerebro en un almacén de información enormemente eficiente.

FILA SUPERIOR (de izquierda a derecha): Landov; Universal Pictures/Entertainment Pictures/Zuma Press; Kevin Dietsch, UPI/Landov; Universal Pictures/Entertainment Pictures/Zuma Press; Rune Hellestad, UPI/Landov; Tschiponnique Skupin, Future-Image/Zuma Press; Dan Steinberg, AP Images; Stephen Hird, Reuters; Ash Knotek, Snappers, Zuma Press; Lisa O'Connor, Zuma Press. SEGUNDA FILA (de izquierda a derecha): Franziska Krug, Action Press/Zuma Press; Sharkpixs/Zuma Press; D. Long, Globe Photos/Zuma Press; AJ Sokalner, UPPA/Zuma Press; Jordan Strauss, Invision/AP Images; Globe Photos/Zuma Press; Universal Pictures/Entertainment Pictures/Zuma Press; Universal Pictures/Entertainment Pictures/Zuma Press; ZBP/Zuma Press; Sharkpixs/Zuma Press; Henry McGee, Globe Photos/Zuma Press. TERCERA FILA (de izquierda a derecha): Fox Searchlight Pictures/Entertainment Pictures/Zuma Press; Clasos/Splash News/Corbis; Fox/Entertainment Pictures/Zuma Press; Graham Whitby Boot, Allstar/UPPA/Zuma Press; Paul Schmulbach, Globe Photos/Zuma Press; Ash Knotek, Snappers/ZUMA Press; Nancy Kaszerman, Zuma Press; NBC/NBCU Photo Bank/Getty Images; Paul Smith, Featureflash/Shutterstock. CUARTA FILA (de izquierda a derecha): Kristin Callahan, Ace Pictures/Zuma Press; Globe Photos/Zuma Press; Lisa O'Connor, Zuma Press; EFE/Zuma Press; Mario Anzuoni, Reuters; Zuma Press; Jim Ruymen, UPI/Landov; Brian Kersey, UPI/Landov; Zuma Press; Jason Merritt, Getty Images. QUINTA FILA (de izquierda a derecha): Graham Whitby, Globe Photos/Zuma Press; Morris Mac Matzen, AP Images; Chris Pizzello, AP Images; PA Photos/Landov; Globe Photos/Zuma Press; Nancy Kaszerman, Zuma Press; Mario Guzman, EFE/Zuma Press; Dave Longendyke, Globe Photos/Zuma Press. SEXTA FILA (de izquierda a derecha): MWP/Zuma Press; Universal Pictures/Entertainment Pictures/Zuma Press; Paul Schmulbach, Globe Photos/Zuma Press; Nancy Kaszerman, Zuma Press; Landov; Columbia Pictures/Entertainment Pictures/Zuma Press; Armando Gallo, Retna Ltd./Corbis; Kristin Callahan, Ace Pictures/Zuma Press. SÉPTIMA FILA (de izquierda a derecha): Chris Pizzello, AP Images; Kristin Callahan, Ace Pictures/Zuma Press; Dan Herrick, Zuma Press; Universal Studios/Entertainment Pictures/Zuma Press; Mario Anzuoni, Reuters; James Warren, UPPA/Zuma Press; Fox/Entertainment Pictures/Zuma Press; Danny Moloshok, AP Images; Nancy Rivera, Ace Pictures/Zuma Press

18 / 22

MM8183 130501 002023. Atención a las neuronas

Atención a las neuronas

¿Cómo se descubrió la «neurona de Jennifer Anniston»? En el Centro Médico para la Neurociencia de la UCLA, los científicos implantan electrodos en el cerebro de pacientes epilépticos, como Crystal Hawkins.

 

Foto: Robert Clark

19 / 22

MM8183 130522 002980. Sin margen de error

Sin margen de error

La extirpación de tumores cerebrales es un procedimiento de riesgo, ya que el cirujano debe eliminar tanto tejido tumoral como sea posible sin destruir tejido nervioso esencial para funciones tales como el habla, la vista y la memoria, ni el tejido conjuntivo entre las neuronas. David Fortin (en el centro, a la derecha), neurocirujano de la Universidad de Sherbrooke, en Canadá, realiza una intervención quirúrgica utilizando un mapa de alta resolución del cerebro del paciente para evitar complicaciones.

 

Foto: Robert Clark

20 / 22

photo3. Una mano guiada

Una mano guiada

Las imágenes cerebrales de un paciente de Fortin demostraron que había un tumor (en rojo) en la región que controla el movimiento de las manos y los pies. (Mira el vídeo.)

 

Maxime Descoteaux y Maxime Chamberland, Sherbrooke Connectivity Imaging Lab, Universidad de Sherbrooke

21 / 22

D440 3D 4 t. Atención a las neuronas

Atención a las neuronas

Cuando la paciente Hawkins vuelva a tener un ataque, los electrodos señalarán su origen, lo que permitirá a los neurocirujanos determinar el área de tejido que deben extirpar. Los electrodos también ofrecen una oportunidad excepcional de observar la actividad de las neuronas que funcionan normalmente, y fue así como se descubrieron las células nerviosas que responden a rostros específicos.

Eric Behnke y Andrew Frew, UCLA

22 / 22

12-zebrafish-neurons-670. Iluminar el camino

Iluminar el camino

Un equipo de científicos del Janelia Farm Research Campus, un centro de investigación del Instituto Médico Howard Hughes, ha añadido a las neuronas de un pez cebra un gen que provoca una emisión de luz cada vez que la célula envía una señal. Como los peces cebra son transparentes, los científicos pueden observar la «brillante» actividad neuronal de la mayoría de las 100.000 neuronas presentes en el cerebro de estos animales. Los patrones de estos «destellos» ofrecen nueva información sobre cómo el cerebro procesa la información.

Imagen: Philipp Keller y Misha Ahrens, Janelia Farm (HHMI)

Siguenos en...

  1. NG
  2. NG Historia
  3. NG Viajes